«

大学研究人员推出微型可编程机器人。

qimuai 发布于 阅读:33 一手编译


大学研究人员推出微型可编程机器人。

内容来源:https://aibusiness.com/robotics/university-researchers-debut-world-s-smallest-programmable-robots

内容总结:

近日,由密歇根大学和宾夕法尼亚大学联合研发的全球最小可编程自主机器人正式亮相。这些微型游泳机器人尺寸仅为200×300×50微米,比一粒盐更小,能够在水中自主感知环境并导航,标志着微尺度机器人技术迈入新阶段。

该机器人通过温度检测监测细胞健康,灵敏度可达三分之一摄氏度,并能向温度升高区域移动。其独特的“摆尾舞”通信方式,灵感来源于蜜蜂的交流行为,可将温度变化信息传递给外界。研究团队创新性地采用电场驱动离子推动水流的 propulsion 系统,有效克服了水环境中的阻力和粘性问题,使机器人能以每秒一个身长的速度运动。

这些微型机器人由光脉冲供能与编程,每个机器人携带独立标识,可实现群体任务分工。其内部集成了处理器、存储器和传感器,首次在亚毫米尺度上实现了完整计算系统。据团队介绍,每个机器人成本仅约1美分,可持续工作数月。

宾夕法尼亚大学助理教授马克·米斯金表示:“我们实现了将自主机器人的尺寸缩小万倍,这为可编程机器人开辟了全新的尺度空间。”未来迭代版本将致力于提升运动速度、集成更多传感器、增强程序复杂性,并拓展至更复杂的工作环境。

该技术有望在医疗领域实现突破性应用,包括细胞健康监测和微尺度设备构建,为微观机器人技术的未来发展奠定了重要基础。

中文翻译:

由谷歌云赞助
如何选择首个生成式AI应用场景
要启动生成式AI项目,首先应关注能够提升人类信息体验的领域。

这些游动微型机器人能自主感知并导航周围环境,通过温度检测监测细胞健康状况。
密歇根大学和宾夕法尼亚大学的研究团队近日发布了据称是全球最小的可编程自主机器人。
这些游动微型机器人专为医疗领域设计,可监测单个细胞健康状态,并协助构建"微尺度设备"。
机器人尺寸约为200×300×50微米(比盐粒更小),能够独立感知环境并自主导航,温度检测精度达摄氏三分之一度以内。
其温度敏感性还使它们能向升温区域移动,并利用热量变化监测细胞级健康状态。机器人通过类似蜜蜂传递信息的"摇摆舞"动作来报告温度变化。
研究团队表示,这些微型机器人可持续工作数月,单台成本仅1美分。
宾夕法尼亚大学电气与系统工程助理教授马克·米斯金在新闻稿中表示:"我们制造的自主机器人尺寸缩小了万倍,这为可编程机器人开辟了全新的尺度领域。"
水中运行通常面临阻力和黏度问题。研究团队没有直接对抗阻力,而是开发了通过推动周围水体前进的推进系统。
机器人通过产生电场推动液体中的离子,离子继而推动附近水分子,产生足以驱动机器人的动力。
通过调节电场,机器人能以复杂模式移动或像鱼群般协同行动,最高速度可达每秒一个身长。
微型机器人通过光脉冲供能与编程,每台携带唯一标识符以实现个体化编程。这使得机器人群体能分工协作,各司其职。
研究人员指出,这是首次在亚毫米级机器人上集成完整计算系统,包括处理器、存储器和传感器。
展望未来,团队表示下一代微型机器人将能存储更复杂程序、实现更快移动、集成更多传感器或在更严苛环境中运行。
"这只是第一章序幕,"米斯金总结道,"我们证明了能在肉眼难辨的尺度上集成大脑、传感器和动力系统,并使其持续工作数月。这个基础将承载各类智能与功能,为微观尺度的机器人技术开启全新未来。"

英文来源:

Sponsored by Google Cloud
Choosing Your First Generative AI Use Cases
To get started with generative AI, first focus on areas that can improve human experiences with information.
The swimming microbots can autonomously sense and navigate their surroundings, using temperature detection to monitor cell health.
Researchers from the universities of Michigan and Pennsylvania have debuted what they said is the world's smallest programmable, autonomous robots.
The swimming microbots are designed for deployment in the medical industry, capable of monitoring individual cell health and helping construct "microscale devices."
Measuring around 200 by 300 by 50 millimeters (smaller than a grain of salt), the tiny robots are designed to independently sense and navigate their surroundings, detecting temperatures to within a third of a degree Celsius.
Their temperature sensitivity also means they can move toward areas of increasing temperatures, and use heat variations to monitor cellular-level health. Changes in temperature are communicated by the robots through a "waggle dance," similar to that used by honeybees to communicate.
According to the team, the microbots can operate for months and cost just a penny each.
"We've made autonomous robots 10,000 times smaller," said Marc Miskin, assistant professor in electrical and systems engineering at Penn, in a press release. "That opens up an entirely new scale for programmable robots."
Operating in water typically brings problems with drag and viscosity. Rather than attempting to push against the resistance directly, the team developed a propulsion system that moves the surrounding water instead.
The robots generate an electrical field that nudges ions in the liquid, which then push nearby water molecules, creating enough force to move the robot.
By adjusting this electrical field, the robots can travel in complex patterns or coordinate in groups, similar to a school of fish, and reach speeds of up to one body length per second.
The microbots are both powered and programmed using light pulses, and each carries a unique identifier that enables individualized programming. This makes it possible for groups of robots to divide tasks, with each unit performing a different role.
The researchers say the work represents the first time a sub-millimeter robot has been equipped with a complete computing system, including a processor, memory and sensors.
Looking ahead, the team said future iterations of the microrobots could store more complex programs, move faster, integrate additional sensors or operate in more demanding environments.
"This is really just the first chapter," Miskin said. "We've shown that you can put a brain, a sensor and a motor into something almost too small to see, and have it survive and work for months. Once you have that foundation, you can layer on all kinds of intelligence and functionality. It opens the door to a whole new future for robotics at the microscale."

商业视角看AI

文章目录


    扫描二维码,在手机上阅读