Gemini为STOC 2026的理论计算机科学家提供自动化反馈。

内容总结:
谷歌推出AI审稿工具,助力理论计算机科学家提升论文严谨性
2025年12月15日,谷歌研究院的研究科学家文森特·科恩-阿达和大卫·伍德拉夫代表研究团队宣布,他们开发了一款基于Gemini人工智能的新工具,旨在为学术会议投稿论文提供自动化反馈,以协助作者在提交前进行严谨性验证。该工具已在理论计算机科学顶级会议STOC 2026的投稿流程中进行了试点。
在理论计算机科学与数学领域,研究的推进极度依赖证明的严谨性与表述的清晰性。尽管同行评审是最终的质量关卡,但作者在长达数月的论文撰写与修改过程中,常受困于细微错误、变量不一致或逻辑漏洞等问题,拖慢研究进度。为此,研究团队尝试利用高度专业化的AI工具,扮演快速、严谨的“协作伙伴”,帮助作者在论文送交人工评审前进行预审。
在此次针对STOC 2026会议的试点项目中,投稿作者可选择使用这款专门的Gemini AI工具,在提交后24小时内获得关于论文的自动化反馈。反馈旨在提供建设性意见并识别潜在技术问题,帮助作者在截止日期前进一步完善稿件。
工具效果显著,获研究者高度认可
该工具基于Gemini 2.5 Deep Think的先进版本,采用推理缩放技术,能够同步探索并整合多种可能的解决方案,而非遵循单一线性思维链。这种方法减少了“幻觉”生成,更专注于发现关键问题。
反馈报告结构清晰,包含论文贡献总结、潜在错误与改进建议列表(常针对具体引理或定理进行分析),以及细微修正与笔误清单。试点结果显示,该工具成功识别了从变量名不一致到计算错误、不等式误用、证明逻辑漏洞等各类问题。一位作者特别指出,工具发现了“一个使我们的证明完全错误的关键漏洞……这是一个困扰了我们数月的、令人尴尬的简单错误”。
在实验结束后超过120位参与者的匿名调查中,反馈极为积极:
- 实验截止时,超过80%的已提交论文作者选择了使用AI审稿。
- 97%的参与者认为反馈有帮助。
- 97%的参与者表示未来投稿愿意再次使用该工具。
- 81%的参与者认为工具提升了论文的清晰度或可读性。
高效中立,成为研究流程的有益补充
除了技术上的准确性,作者们高度评价AI反馈的速度与中立性。许多参与者在短短两天内就收到了报告,并赞赏其“中立的语气和严谨性”,认为这是对人工审阅的有益补充。
作为各自领域的专家,参与者能够有效区分AI反馈中的真知灼见与偶尔出现的“幻觉”。尽管模型在解析复杂符号或解读图表时偶有困难,但作者并未轻视其输出,而是仔细筛选出其中有价值且正确的部分,并以此作为进一步验证的起点。这清晰地展现了AI作为协作伙伴的潜力,即通过提供严谨的分析输出,辅助人类专家做出更明智的决策,从而增强整个研究流程。
具教育潜力,展望未来集成
此次实验的研究群体普遍看好该工具在教育领域的应用前景。75%的受访作者认为,该工具能为学生提供关于数学严谨性和表述清晰度的即时反馈,具有显著的教育价值。
此次试点成功验证了专业AI工具在基础研究领域作为协作伙伴的潜力,为未来相关研究方向树立了标杆。研究团队强调,其总体目标并非取代至关重要的同行评审,而是对其予以增强和补充。与此相应,88%的参与者强烈希望能在整个研究过程中持续使用此类工具。
该项目由文森特·科恩-阿达、拉杰什·贾亚拉姆、乔恩·施耐德和大卫·伍德拉夫共同领导。
中文翻译:
Gemini为STOC 2026的理论计算机科学家提供自动化反馈
2025年12月15日
谷歌研究院研究科学家 Vincent Cohen-Addad 与 David Woodruff 代表研究团队撰写
我们在此介绍一款新工具,它利用Gemini帮助科学家严格验证其会议投稿论文的正确性。该工具已在STOC 2026会议上进行了测试。
理论计算机科学与数学领域对真理的追求,依赖于最高标准的证明、严谨性和清晰度。同行评审虽是至关重要的最终环节,但起草和完善复杂的理论工作往往耗时数月,其中简单的错误、不一致的变量或细微的逻辑漏洞常常拖慢整个研究进程。那么,一个高度专业化的AI工具能否充当一个快速、严谨的协作者,在论文送达人类评审之前,帮助作者预先审查自己的作品呢?
为了验证这种可能性,我们为理论计算机科学领域最负盛名的会议之一——ACM计算理论年度研讨会(STOC 2026)——创建了一个实验性项目。该项目为作者提供由专门的Gemini AI工具生成的、自动化的投稿前反馈。我们的目标是在作者提交论文后的24小时内,提供建设性建议并识别潜在的技术问题,帮助他们在截止日期前润色最终稿件。
反响非常积极:该工具成功识别了各类问题,包括计算和逻辑错误。在此,我们报告该工具的研发过程及其使用效果。
为数学严谨性而优化
该反馈工具利用了Gemini 2.5 Deep Think高级版本中的推理扩展方法。这种设置使该方法能够在给出最终答案前,同时探索并组合多种可能的解决方案,而非遵循单一的线性思维链。通过结合不同的推理和评估路径,该方法减少了固有的“幻觉”,并聚焦于最突出的问题。
反馈格式
作者收到的反馈结构清晰,分为几个关键部分:论文贡献总结、潜在错误与改进建议列表(通常会分析具体的引理或定理),以及细微更正与拼写错误列表。查看部分反馈示例。
影响与技术深度
该工具成功识别了从变量名不一致,到计算错误、不等式应用不当、证明中存在逻辑漏洞等各类复杂问题。正如一位作者所言,该工具发现了一个“关键漏洞……导致我们的证明完全错误”,并补充说这是一个“困扰我们数月、简单到令人尴尬的漏洞”。
超过120名参与者回复了我们的实验后调查并给予了授权,反馈非常积极。他们肯定了模型在发现关键错误方面的成功及其提供深刻见解的能力。总结如下:
- 实验结束时,超过80%的投稿论文选择了参与我们的AI评审。
- 97%的参与者认为反馈有帮助。
- 97%的参与者表示未来投稿会再次使用此工具。
- 81%的参与者认为模型提高了论文的清晰度或可读性。
用户体验
除了技术准确性,作者们还看重AI评审的速度和中立性。参与者提到在短短两天内就收到了反馈。其他人则赞扬了输出结果的“中立语气和严谨性”,认为这是对人类评审的有益补充。
解读输出
由于参与者都是各自领域的专家,他们能够轻松区分有用的见解与偶尔出现的“幻觉”。尽管模型有时会遇到困难——尤其是在解析复杂符号或解读图表时——但作者们并未轻视大语言模型的输出。相反,他们仔细过滤掉无用信息,提取输出中重要且正确的部分,然后将反馈作为验证的起点。这一结果清楚地展示了AI作为协作者的潜力,通过帮助人类专家基于模型的严谨输出做出明智决策,来增强研究工作流程。
教育影响与未来展望
参与本次实验的研究界认为,该工具在培养下一代方面具有巨大潜力。75%的受访作者认为,该工具通过就数学严谨性和表述清晰度提供即时反馈,对学生具有教育价值。
这项试点项目展示了专业化AI工具在基础研究领域作为协作者的潜力,为未来潜在的研究计划确立了目标。我们的总体目标并非取代关键的同行评审过程,而是对其进行补充和增强。与此相呼应的是,88%的参与者表示强烈希望在整个研究过程中都能持续使用此类工具。
致谢
Vincent Cohen-Addad、Rajesh Jayaram、Jon Schneider 和 David Woodruff 共同领导了本项目。
英文来源:
Gemini provides automated feedback for theoretical computer scientists at STOC 2026
December 15, 2025
Vincent Cohen-Addad and David Woodruff, Research Scientists, Google Research, on behalf of the research team
We describe a new tool that uses Gemini to help scientists rigorously verify the correctness of their conference submission papers, which was tested for the STOC 2026 conference.
The pursuit of truth in theoretical computer science and mathematics relies on the highest standards of proof, rigor, and clarity. While peer review is the crucial final check, the process of drafting and refining complex theoretical work often takes months, with simple errors, inconsistent variables, or subtle logical gaps frequently slowing down the entire research pipeline. But could a highly specialized AI tool act as a fast, rigorous collaborator, helping authors pre-vet their work before it ever reaches human reviewers?
To test this potential, we created an experimental program for the Annual ACM Symposium on Theory of Computing (STOC 2026) — one of the most prestigious venues in theoretical computer science. This program offered authors automated, pre-submission feedback generated by a specialized Gemini AI tool. Our objective was to provide constructive suggestions and identify potential technical issues within 24 hours of submission, helping authors polish their final drafts before the submission deadline.
The responses were very positive: the tool successfully identified a variety of issues, including calculation and logic errors. Here we report how we developed the tool and the results of its use.
Optimized for mathematical rigor
The feedback tool leveraged inference scaling methods in an advanced version of Gemini 2.5 Deep Think. This setup enables the method to simultaneously explore and combine multiple possible solutions before giving a final answer, rather than pursuing a single, linear chain of thought. By combining different reasoning and evaluation traces, the method reduces inherent hallucinations and focuses on the most salient issues.
Feedback format
Authors received structured feedback divided into key sections: a summary of the paper's contributions, a list of potential mistakes and improvements (often analyzing specific lemmas or theorems), and a list of minor corrections and typos. See some feedback examples.
Impact and technical depth
The tool successfully identified a wide range of issues, from inconsistent variable names to complex problems like calculation errors, incorrect application of inequalities, and logical gaps in proofs. As one author noted, the tool found "a critical bug... that made our proof entirely incorrect," further adding that it was an "embarrassingly simple bug that evaded us for months."
Over 120 participants responded to our post-experiment survey and gave us consent, and the responses were very positive, with individuals citing the model’s success at finding critical errors and its ability to return insightful commentary. In summary:
-
80% of submitted papers at the time our experiment ended had opted-in for our AI review
- 97% found the feedback helpful
- 97% would use this tool again for future submissions
- 81% found the model improved clarity or readability of the paper
The user experience
Beyond technical accuracy, authors valued the speed and neutrality of the AI review. Participants noted receiving feedback in just two days. Others praised the "neutral tone and rigor" of the output, finding it a useful complement to human readers.
Interpreting the output
Because participants are experts in their respective fields, they were able to readily distinguish helpful insights from occasional "hallucinations". While the model sometimes struggled — particularly with parsing complex notation or interpreting figures — authors weren't dismissive of the LLM's output. Rather, they carefully filtered out the noise and extracted the important and correct parts of the output, and then used the feedback as a starting point for verification. This outcome clearly demonstrates the potential for AI to serve as a collaborative partner, augmenting the research workflow by helping human experts to make informed decisions based on the model's rigorous outputs.
Educational impact and future outlook
The research community surveyed in this experiment saw significant potential for this tool in training the next generation. 75% of surveyed authors believed the tool has educational value for students by offering immediate feedback on mathematical rigor and presentation clarity.
This pilot demonstrated the potential for specialized AI tools to serve as collaborative partners in fundamental areas, establishing a target for potential future research initiatives. Our overall goal is not to replace the critical peer review process, but rather to augment and enhance it. Reflecting this, 88% of participants expressed strong interest in having continuous access to such a tool throughout their entire research process.
Acknowledgements
Vincent Cohen-Addad, Rajesh Jayaram, Jon Schneider, and David Woodruff co-led this project
文章标题:Gemini为STOC 2026的理论计算机科学家提供自动化反馈。
文章链接:https://blog.qimuai.cn/?post=2464
本站文章均为原创,未经授权请勿用于任何商业用途